Moment Methods in Padé Approximation

E. Hendriksen and H. van Rossum
Instituut voor Propedeutische Wiskunde, Universiteit van Amsterdam, Amsterdam, The Netherlands
Communicated by E.W. Cheney

Received July 17, 1981

Abstract

The complex sequence $\left(c_{k}\right)_{k=0}^{\infty}$ is assumed to be normal. In the separable Hilbert space ($H,\langle\cdot, \cdot\rangle$) we solve the "operator moment problem": Find $A \in B(H)$ such that $\left\langle A^{k} u_{0}, u_{0}\right\rangle=c_{k}(k=0,1, \ldots),\left(u_{0} \in H\right)$. A compact $\Leftrightarrow\left(c_{k}\right)_{k=0}^{\infty}$ has meromorphic generating function $f(z)=\sum_{k=0}^{\infty} c_{k} z^{k}$. Pade-type approximants to f, sometimes the ordinary Pade approximants, are obtained as solutions of certain approximate Fredholm equations generated by projections onto finite dimensional subspaces.

Introduction and Summary

In 1963 Chisholm [4] showed that Fredholm integral equation techniques can yield convergence results for Pade approximants associated with the Neumann series solution of such an equation. Compare also [5].

Since then, a number of contributions in this direction have appeared. We mention especially Baker's 1975 paper [1], containing many results and applications. In the present paper we exploit the so-called moment method due to Vorobyev [8].

With the Fredholm equation

$$
\begin{equation*}
x=z A x+u_{0} \tag{1}
\end{equation*}
$$

where A is a compact operator on the separable Hilbert space $(H\langle\cdot, \cdot\rangle) ; x$, $u_{0} \in H ; z \in C$, we associate the "approximate equation"

$$
x_{n}=z A_{n} x_{n}+u_{0},
$$

set in the subspace $U_{n}=\operatorname{span}\left(u_{0}, A u_{0}, A^{2} u_{0}, \ldots, A^{n-1} u_{0}\right)$ of H. Here $A_{n}: U_{n} \rightarrow U_{n}$ is the solution of Vorobyev's moment problem:
"Find an operator $A_{n}: U_{n} \rightarrow U_{n}$ satisfying

$$
\begin{aligned}
& A_{n}^{k} u_{0}=A^{k} u_{0}, \quad(k=0,1, \ldots, n-1) \\
& A_{n}^{n} u_{0}=E_{n} u_{n}
\end{aligned}
$$

where E_{n} is the orthogonal projection of H onto U_{n} and $u_{n}=A^{n} u_{0} .{ }^{\prime \prime} A_{n}$ can be extended to all of H by putting $A_{n}=E_{n} A E_{n}$. For (1) we have the solution in the form of a Neumann series,

$$
x=u_{0}+z A u_{0}+z^{2} A^{2} u_{0}+\cdots,
$$

valid at least for all $z \in C$ satisfying $|z|<\|A\|^{-1}$.
Putting $\left\langle A^{n} u_{0}, u_{0}\right\rangle=c_{n}(n=0,1, \ldots)$ we have

$$
\left\langle x, u_{0}\right\rangle=\sum_{n=0}^{\infty} c_{n} z^{n}=f(z) .
$$

We show that $\left\langle x_{n}, u_{0}\right\rangle$ is the $[n-1 / n\}$-Pade-type approximant for f.
Vorobyev proves: $x_{n} \rightarrow x$ strongly. This implies a convergence result for these approximants (see Theorem 2.1). If the operator A in (1), apart from being compact, is, moreover, assumed to be simple (see Definition 1.1), then $\left\langle x_{n}, u_{0}\right\rangle$ is the $[n-1 / n]$-Padé approximant in the ordinary Padé table and we have a convergence result in this case also: Theorem 1.3.

In the case of a non-simple compact operator A, we modify Vorobyev's moment problem in order to obtain results on convergence in the ordinary Padé table. We resort to something akin to oblique projection (see Baker [2]). An important feature of these methods is that we get results on the rate of convergence of $\left\langle x_{n}, u_{0}\right\rangle \rightarrow\left\langle x, u_{0}\right\rangle$. (See (1.8).) This brings in the question: Given a power series $\sum_{n=0}^{\infty} c_{n} z^{n}$, in advance, can we find a linear operator A (at least bounded) such that $\left\langle A^{n} u_{0}, u_{0}\right\rangle=c_{n}(n=0,1, \ldots)$? This problem, referred to as the "operator moment problem," is treated in Section 4. In the case $\sum_{n=0}^{\infty} c_{n} z^{n}$ represents a meromorphic function, which is regular at 0 , a compact operator can always be found. Hence the techniques indicated above can sometimes be used as a method in convergence theory of the Pade table. Apart from these applications, the operator moment problem seems to be interesting in its own right.

Throughout this paper H will denote a separable Hilbert space with inner product $\langle\cdot, \cdot\rangle$.

Vorobyev [8] considered the following moment problem:
Given a bounded linear operator A on H and $u_{0} \in H\left(u_{0} \neq 0\right)$, construct a linear operator A_{n} on the subspace $U_{n}=\operatorname{span}\left(u_{0}, u_{1}, \ldots, u_{n-1}\right)$ satisfying

$$
\begin{gather*}
A_{n}^{k} u_{0}=A^{k} u_{0} \quad(k=0,1, \ldots, n-1), \\
E_{n} u_{n}=E_{n} A^{n} u_{0}=A_{n}^{n} u_{0}, \tag{1.1}
\end{gather*}
$$

where E_{n} is the orthogonal projection onto U_{n}.

The operator A_{n} so obtained plays a major role in the convergence theory of the approximations we consider in this paper. We introduce the sequence $\left(c_{n}\right)_{n=0}^{\infty}$ defined by

$$
\begin{equation*}
c_{n}=\left\langle A^{n} u_{0}, u_{0}\right\rangle \quad(n=0,1, \ldots) \tag{1.2}
\end{equation*}
$$

We will assume always that $\left(c_{n}\right)_{n=0}^{\infty}$ is a normal sequence, i.e., all determinants

$$
H_{n}^{(m)}=\left|\begin{array}{cccc}
c_{m} & c_{m+1} & \cdots & c_{m+n-1} \\
c_{m+1} & c_{m+2} & \cdots & c_{m+n} \\
\vdots & \vdots & \vdots & \vdots \\
c_{m+n-1} & c_{m+n} & \cdots & c_{m+2 n-2}
\end{array}\right| \quad(m, n=0,1, \ldots)
$$

differ from zero. This has the geometric implication that $\operatorname{dim} U_{n}=n$ ($n=0,1, \ldots$). This can be proved as follows:

Consider the $(n \times n)$-matrix $\left(\alpha_{i j}\right)_{i, j=0}^{n-1}$, where

$$
\alpha_{i j}=\left\langle u_{i}, v_{j}\right\rangle \quad(i, j=0,1, \ldots, n-1)
$$

and $u_{i}=A^{i} u_{0}, v_{j}=\left(A^{*}\right)^{j} u_{0}(i, j=0,1, \ldots)$.
Here A^{*} denotes the adjoint of A. The determinant of this matrix, e.g.,

$$
\left|\begin{array}{cccc}
\left\langle u_{0}, v_{0}\right\rangle & \left\langle u_{0}, v_{1}\right\rangle & \ldots & \left\langle u_{0}, v_{n-1}\right\rangle \\
\left\langle u_{1}, v_{0}\right\rangle & \left\langle u_{1}, v_{1}\right\rangle & \ldots & \left\langle u_{1}, v_{n-1}\right\rangle \\
\vdots & \vdots & \vdots & \vdots \\
\left\langle u_{n-1}, v_{0}\right\rangle & \left\langle u_{n-1}, v_{1}\right\rangle & \ldots & \left\langle u_{n-1}, v_{n-1}\right\rangle
\end{array}\right|
$$

is

$$
H_{n}^{(0)}=\left|\begin{array}{cccc}
c_{0} & c_{1} & \cdots & c_{n-1} \\
c_{1} & c_{2} & \cdots & c_{n} \\
\vdots & \vdots & \vdots & \vdots \\
c_{n-1} & c_{n} & \cdots & c_{2 n-2}
\end{array}\right| \neq 0
$$

If the vectors $u_{0}, u_{1}, \ldots, u_{n-1}$ were linearly dependent then the same would hold for the rows of $H_{n}^{(0)}$. This is impossible.

We put $E_{n} u_{n}=-\alpha_{0} u_{0}-\alpha_{1} u_{1}-\cdots-\alpha_{n-1} u_{n-1}$, where the α_{i} are complex numbers. We can write

$$
\left(A_{n}^{n}+\alpha_{n-1} A_{n}^{n-1}+\cdots+\alpha_{0} I\right) u_{0}=0 .
$$

In the following we use the notation $P_{n}\left(A_{n}\right)=A_{n}^{n}+\alpha_{n-1} A_{n}^{n-1}+\cdots+\alpha_{0} I$. In the rest of this section we will consider only those bounded operators $A: H \rightarrow H$ that are simple.

Definition 1.1. The bounded linear operator A is said to be simple if with $u_{k}=A^{k} u_{0}{ }^{\prime}(k=0,1, \ldots)$ and $v_{j}=\left(A^{*}\right)^{j} u_{0}(j=0,1, \ldots)$

$$
\operatorname{span}\left(u_{0}, u_{1}, \ldots, u_{n-1}\right)=\operatorname{span}\left(u_{0}, v_{1}, \ldots, v_{n-1}\right), \quad \forall n \in N
$$

holds.
An important special case of a simple operator is a bounded self-adjoint operator. On the other hand, there exist simple non-self-adjoint operators.

For the coefficients α_{i} of the polynomial function P_{n} considered above, a system of equations can be found by observing that $u_{n}-E_{n} u_{n}$ is orthogonal to the space $U_{n}=\operatorname{span}\left(u_{0}, u_{1}, \ldots, u_{n-1}\right)=\operatorname{span}\left(u_{0}, v_{1}, \ldots, v_{n-1}\right)$, whence

$$
\left\langle u_{n}-E_{n} u_{n}, v_{k}\right\rangle=0 \quad(k=0,1, \ldots, n-1)
$$

Written in full

$$
\begin{gather*}
\left\langle u_{0}, v_{0}\right\rangle \alpha_{0}+\left\langle u_{1}, v_{0}\right\rangle \alpha_{1}+\cdots+\left\langle u_{n-1}, v_{0}\right\rangle \alpha_{n-1}+\left\langle u_{n}, v_{0}\right\rangle=0 \\
\left\langle u_{0}, v_{1}\right\rangle \alpha_{0}+\left\langle u_{1}, v_{1}\right\rangle \alpha_{1}+\cdots+\left\langle u_{n-1}, v_{1}\right\rangle \alpha_{n-1}+\left\langle u_{n}, v_{1}\right\rangle=0 \\
\vdots \vdots \vdots \vdots \vdots \tag{1.3}\\
\vdots \\
\vdots \\
\left\langle u_{0}, v_{n-1}\right\rangle \alpha_{0}+\left\langle u_{1}, v_{n-1}\right\rangle \alpha_{1}+\cdots+\left\langle u_{n-1}, v_{n-1}\right\rangle \alpha_{n-1}+\left\langle u_{n}, v_{n-1}\right\rangle= \\
\vdots
\end{gather*}
$$

or equivalently

$$
\begin{array}{ccccc}
c_{0} \alpha_{0}+c_{1} \alpha_{1}+\cdots+c_{n-1} \alpha_{n-1}+c_{n} & =0 \tag{1.4}\\
c_{1} \alpha_{0}+c_{2} \alpha_{1}+\cdots+ & c_{n} \alpha_{n-1} & +c_{n+1} & =0 \\
\vdots & \vdots & \vdots & \vdots & \vdots \\
c_{n-1} \alpha_{0}+c_{n} \alpha_{1}+\cdots+ & c_{2 n-2} \alpha_{n-1}+ \\
c_{2 n-1} & = & 0
\end{array}
$$

We put

$$
\Delta_{n}(z)=\left|\begin{array}{cccc}
c_{0} & c_{1} & \cdots & c_{n} \\
c_{1} & c_{2} & \cdots & c_{n+1} \\
\vdots & \vdots & \vdots & \vdots \\
c_{n-1} & c_{n} & \cdots & c_{2 n-1} \\
z^{n} & z^{n-1} & \cdots & 1
\end{array}\right| \quad(z \in C)
$$

See Baker [1, p. 816].
It is easy to verify that

$$
\begin{equation*}
z^{n} P_{n}\left(z^{-1}\right)=\Delta_{n}(z) / H_{n}^{(0)} \tag{1.5}
\end{equation*}
$$

From (1.5) it follows (Perron [7, p. 243] that $z^{n} P_{n}\left(z^{-1}\right)$ is the denominator of the Padé approximant $[n-1 / n]_{f}$ for $\sum_{n=0}^{\infty} c_{n} z^{n}=f(z)$.

In the first part of the proof of the following theorem we use an argument due to Brezinski [3, pp. 132-133].

Theorem 1.1. Let x_{n} be the solution of the equation $x_{n}=z A_{n} x_{n}+u_{0}$ $\left(x_{n} \in U_{n}\right)$ and z^{-1} not an eigenvalue of A_{n} which is the solution of the moment problem (1.1) for the simple operator A. Let $c_{n}=\left\langle A^{n} u_{0}, u_{0}\right\rangle$ $(n=0,1, \ldots)$ and assume that $\left(c_{n}\right)_{n=0}^{\infty}$ is normal. Then $\left\langle x_{n}, u_{0}\right\rangle=[n-1 / n]_{f}$ for $f(z)=\sum_{n=0}^{\infty} c_{n} z^{n}$.

Proof. $\quad P_{n}$ denotes the characteristic polynomial of A_{n}. As $n+1$ elements of U_{n} are linearly dependent, numbers $\beta_{0}, \beta_{1}, \ldots, \beta_{n}$ exist (not all equal to zero) with

$$
\sum_{i=0}^{n} \beta_{i} A_{n}^{i} u_{0}=0
$$

and so

$$
\sum_{i=0}^{n} \beta_{i} A_{n}^{k+i} u_{0}=0 \quad(k=0,1, \ldots)
$$

Put

$$
\left\langle A_{n}^{i} u_{0}, u_{0}\right\rangle=c_{i}^{(n)} \quad(i=0,1, \ldots)
$$

to obtain

$$
\begin{equation*}
\sum_{i=0}^{n} \beta_{i} c_{k+i}^{(n)}=0 \quad(k=0,1, \ldots) \tag{1.6}
\end{equation*}
$$

For a value of z regular with respect to A_{n},

$$
\left\langle x_{n}, u_{0}\right\rangle=\left\langle\left(I-z A_{n}\right)^{-1} u_{0}, u_{0}\right\rangle=\sum_{i=0}^{\infty} c_{i}^{(n)} z^{i}
$$

This last series is a recurrent series in view of (1.6) so it is a rational function $\tilde{Q}_{n-1}(z) / \tilde{P}_{n}(z)$ (indices representing degrees).

Any zero z of \tilde{P}_{n} makes $I-z A_{n}$ singular, hence z^{-1} is an eigenvalue of A_{n}; in other words, z^{-1} is a zero of P_{n}. Hence $\tilde{P}_{n}(z)$ is the denominator of $[n-1 / n]_{f}$ for $f(z)=\sum_{n=0}^{\infty} c_{n} z^{n}$. We already know $c_{i}^{(n)}=c_{i}(i=0,1, \ldots$, $n-1$). We only have to show that

$$
c_{i}^{(n)}=c_{i} \quad(i=n, n+1, \ldots, 2 n-1)
$$

also holds. Consider the product $\left(\sum_{i=0}^{\infty} c_{i} z^{i}\right)\left(z^{n} P_{n}\left(z^{-1}\right)\right)$. The coefficient of z^{k} (where $k \in\{n, n+1, \ldots, 2 n-1\}$) is

$$
\alpha_{0} c_{k-n}+\alpha_{1} c_{k-n+1}+\cdots+\alpha_{n-1} c_{k-1}+c_{k} .
$$

Then

$$
\left(\alpha_{0} c_{k-n}+\alpha_{1} c_{k-n+1}+\cdots+\alpha_{n-1} c_{k-1}+c_{k}\right) H_{n}^{(0)}
$$

is equal to the determinant obtained from $\Delta_{n}(z)$ upon replacing the last row, i.e., $z^{n}, z^{n-1}, \ldots, 1$ by the row $c_{k-n}, c_{k-n+1}, \ldots, c_{k-1}, c_{k}$. But the determinant so obtained is equal to zero.

Remark 1.1 The coefficient of $z^{2 n}$ in the product above is

$$
\alpha_{0} c_{n}+\alpha_{1} c_{n+1}+\cdots+\alpha_{n-1} c_{2 n-1}+c_{2 n}=H_{n+1}^{0} / H_{n}^{(0)} \neq 0 .
$$

We quote the following result from Vorobyev [8].
Theorem 1.2. Let $A: H \rightarrow H$ be compact and z a regular value for

$$
\begin{equation*}
x=z A x+u_{0} \quad\left(u_{0} \in H\right) . \tag{1.7}
\end{equation*}
$$

Then for $n \in \mathbf{N}$ sufficiently large the equation

$$
x_{n}=z A_{n} x_{n}+u_{0},
$$

where A_{n} is the solution of the moment problem (1.1), has a solution $x_{n} \in U_{n}=\operatorname{span}\left(u_{0}, A u_{0}, \ldots, A^{n-1} u_{0}\right)$ and the sequence $\left(x_{n}\right)$ converges strongly to the solution of (1.7) (i.e., $\lim _{n \rightarrow \infty}\left\|x_{n}-x\right\|=0$).
The proof is based on the fact that $\lim _{n \rightarrow \infty}\left\|A-A_{n}\right\|=0$. It is important that $\left\|A_{n}\right\| \leqslant\|A\|$.

We restrict ourselves now to the case of a simple compact operator A and to those regular values of z satisfying $|z|<\|A\|^{-1}$. Then the solution of (1.7) is given by the Neumann series

$$
x=u_{0}+z A u_{0}+z^{2} A^{2} u_{0}+\cdots .
$$

Now

$$
\left\langle x, u_{0}\right\rangle=c_{0}+c_{1} z+c_{2} z^{2}+\cdots .
$$

In view of Theorem 1.1 we have
Theorem 1.3. Let A be simple and compact and let the sequence $\left(c_{n}\right)_{n=0}^{\infty}$ of its moments be normal. Then the sequence of $[n-1 / n]_{f}$ Padé approximants to $f(z)=\sum_{n=0}^{\infty} c_{n} z^{n}$ converges to f for all z satisfying $|z|<\|A\|^{-1}$.

Remark 1.2. On the rate of convergence the following result (see Vorobyev [8, p. 36, Theorem VII]) is known:
For any real $q>0$ there exists a positive real number D, not depending on n, such that

$$
\left\|x-x_{n}\right\| \leqslant D q^{n}
$$

Hence we have for the rate of convergence in our case

$$
\begin{equation*}
\left|\left\langle x, u_{0}\right\rangle-\left\langle x_{n}, u_{0}\right\rangle\right| \leqslant\left\|x-x_{n}\right\|\left\|u_{0}\right\| \leqslant D\left\|u_{0}\right\| q^{n} . \tag{1.8}
\end{equation*}
$$

2.

Let A be a bounded linear operator with a normal sequence of moments $\left(c_{n}\right)_{n=0}^{\infty}$, where $c_{n}=\left\langle A^{n} u_{0}, u_{0}\right\rangle(n=0,1, \ldots) ; u_{0} \in H$. The operator A is no longer assumed to be simple. Let $\left(A_{n}\right)_{n=0}^{\infty}$ be the sequence of linear operators solving the moment problem (1.1).

Solving the equation in $U_{n}=\operatorname{span}\left(u_{0}, A u_{0}, \ldots, A^{n-1} u_{0}\right)$,

$$
x_{n}=z A_{n} x_{n}+u_{0}
$$

for any value of z regular with respect to A_{n}, we have

$$
\begin{equation*}
\left\langle x_{n}, u_{0}\right\rangle=\left\langle\left(I-z A_{n}\right)^{-1} u_{0}, u_{0}\right\rangle=\sum_{i=0}^{\infty} c_{i}^{(n)} z^{i} \tag{2.1}
\end{equation*}
$$

We still have the relation (1.5), hence

$$
\left\langle x_{n}, u_{0}\right\rangle=R_{n-1}(z) / S_{n}(z)
$$

where R_{n-1} and S_{n} have degrees $n-1$ and n, respectively. The Taylor expansion of $R_{n-1}(z) / S_{n}(z)$ agrees with $\sum_{i=0}^{\infty} c_{i} z^{i}$ up through the term $c_{n-1} z^{n-1}$. For these "Padé-type" approximants we have

Theorem 2.1. Let $A: H \rightarrow H$ be compact and the sequence $\left(c_{n}\right)_{n=0}^{\infty}$ of its moments be normal. Then the sequence of Pade-type approximants $\left(R_{n-1}(z) / S_{n}(z)\right)$ converges to $\sum_{i=0}^{\infty} c_{i} z^{n}$ for all z satisfying $|z|<\|A\|^{-1}$.
Regarding the rate of convergence the same remark can be made as at the end of Section 1.

Remark 2.1. If z is a regular value for A then

$$
x=z A x+w
$$

has a (unique) solution for every $w \in H$. If we take $w=u_{k}$ we find, for the Neumann series solution,

$$
x=u_{k}+z A u_{k}+z^{2} A^{2} u_{k}+\cdots,
$$

hence

$$
\left\langle x, u_{0}\right\rangle=\sum_{n=0}^{\infty} c_{k+n} z^{n} .
$$

Hence the result in Theorem 2.1 holds for all series $\sum_{n=0}^{\infty} c_{k+n} z^{n}$ ($k=0,1, \ldots$).

3.

Let A be a bounded linear operator in H and let $u_{0} \in H$ and assume that the moments $c_{n}=\left\langle A^{n} u_{0}, u_{0}\right\rangle(n=0,1,2, \ldots)$ form a normal sequence. If A is not simple, orthogonal projections no longer lead to ordinary Padé approximants. In order to obtain ordinary Padé approximants we have to resort to oblique projections.

Let $\quad u_{n}=A^{n} u_{0} \quad$ and $\quad v_{n}=\left(A^{*}\right)^{n} u_{0}, \quad(n=0,1,2, \ldots) \quad$ and put $U_{n}=\operatorname{span}\left(u_{0}, \ldots, u_{n-1}\right)$ and $V_{n}=\operatorname{span}\left(v_{0} \ldots, v_{n-1}\right)$. For each n we define a linear mapping $B_{n}: U_{n} \rightarrow U_{n}$ by

$$
\begin{align*}
B_{n} u_{k} & =u_{k+1} \quad & \text { if } \quad k=0,1, \ldots, n-2, \\
\text { and } B_{n} u_{n-1} & =u_{n}^{\prime} & \text { if } \quad k=n-1, \tag{3.1}
\end{align*}
$$

where

$$
\begin{equation*}
u_{n}^{\prime}=u_{n}-P_{n}(A) u_{0} . \tag{3.2}
\end{equation*}
$$

It is obvious that then $P_{n}\left(B_{n}\right) u_{0}=0(n=1,2, \ldots)$. We see that $z^{n} P_{n}\left(z^{-1}\right)$ is the Padé denominator on the field ($n-1 / n$) in the ordinary Padé table for $\sum_{n=0}^{\infty} c_{n} z^{n}$. An analysis as done in Section 1 shows that Theorem 1.1 is a special case of

Theorem 3.1. Let A be a bounded linear operator in H and let $u_{0} \in H$. Assume that the moments $c_{n}=\left\langle A^{n} u_{0}, u_{0}\right\rangle$ form a normal sequence and let $U_{n}=\operatorname{span}\left(u_{0}, A u_{0}, \ldots, A^{n-1} u_{0}\right) \quad(n=1,2, \ldots)$. Let the linear mapping $B_{n}: U_{n} \rightarrow U_{n}$ be defined by (3.1) and (3.2). Then, if $x_{n} \in U_{n}$ satisfies $x_{n}=$ $z B_{n} x_{n}+u_{0}$ for any regular value of the complex parameter z, then $\left\langle x_{n}, u_{0}\right\rangle$ is the $[n-1 / n]$ Padé approximant of the series $\sum_{k=0}^{\infty} c_{k} z^{k}$.

Since $\left(P_{n}(A) u_{0}, \bar{P}_{n}\left(A^{*}\right) u_{0}\right)_{n=0}^{\infty}$ is a biorthogonal system in H we have $u_{n}-u_{n}^{\prime} \perp V_{n}(n=1,2, \ldots)$. In fact $u_{n}^{\prime}=Q_{n} u_{n}$, where $Q_{n}: H \rightarrow H$ is the continuous linear projection with kernel V_{n}^{\perp} and range U_{n}. (The existence of these projections follows from the normality of $\left(c_{n}\right)_{n=0}^{\infty}$.)

In the case that A is compact and that $\left(\left\|Q_{n}\right\|\right)_{n=1}^{\infty}$ is bounded, a modification of Vorobyev's method, i.e., approximation of A by $Q_{n} A Q_{n}$, gives similar convergence results of the Pade approximants as in the case that A is simple, Now we drop the assumption that A is compact and that $\left(\left\|Q_{n}\right\|\right)_{n=1}^{\infty}$ is bounded, but instead we suppose that $\left(u_{n}\right)_{n=0}^{\infty}$ is a (Schauder) basis of H and that $\left(S_{n}\right)_{n=0}^{\infty}$ is the corresponding sequence of projections (i.e., $S_{n}\left(\sum_{k=0}^{\infty} \xi_{k} u_{k}\right)=\sum_{k=0}^{n-1} \xi_{k} u_{k}$). Suppose K is the corresponding basis constant, so $K=\sup _{n}\left\|S_{n}\right\|$. Then we can extend the operators B_{n} to all of H by

$$
\begin{equation*}
B_{n} u_{k}=u_{k+1} \quad \text { for } \quad k=n, n+1, \ldots \tag{3.3}
\end{equation*}
$$

The fact that $\left(u_{n}\right)_{n=0}^{\infty}$ is a basis guarantees us that B_{n} is continuous. For each $x=\sum_{k=0}^{\infty} \xi_{k} u_{k}$ in H we have

$$
\begin{equation*}
B_{n} x=A x-\xi_{n-1} P_{n}(A) u_{0} \tag{3.4}
\end{equation*}
$$

where

$$
\left|\xi_{n-1}\right|=\frac{\left\|S_{n} x-S_{n-1} x\right\|}{\left\|u_{n-1}\right\|} \leqslant \frac{2 K}{\left\|u_{n-1}\right\|}\|x\|
$$

whence

$$
\begin{equation*}
\left\|B_{n} x\right\| \leqslant\left(\|A\|+\frac{2 K\left\|P_{n}(A) u_{0}\right\|}{\left\|u_{n-1}\right\|}\right)\|x\| \tag{3.5}
\end{equation*}
$$

and

$$
\begin{equation*}
\left\|B_{n}-A\right\| \leqslant \frac{2 K\left\|P_{n}(A) u_{0}\right\|}{\left\|u_{n-1}\right\|} \quad(n=1,2, \ldots) \tag{3.6}
\end{equation*}
$$

4.

In this section we consider the "operator moment problem": Given a function $f, f(z)=\sum_{n=0}^{\infty} c_{n} z^{n}, c_{0}=1$, can we find a bounded or even compact linear operator A in the separable Hilbert space H such that $\left\langle A^{n} u_{0}, u_{0}\right\rangle=c_{n}(n=0,1,2, \ldots)$, for some $u_{0} \in H$?

It turns out that a bounded operator A can be found if the power series $\sum_{n=0}^{\infty} c_{n} z^{n}$ has a positive radius of convergence. The reverse also holds. A
compact operator can be constructed if and only if f is meromorphic in the whole complex plane and $f(0)=1$.

In the sequel $H=l_{2}$ and $\left(e_{n}\right)_{n=0}^{\infty}$ is the unit vector basis of H.
Lemma 4.1. If $\left(\rho_{n}\right)_{n=0}^{\infty}$ is a sequence of scalars such that $\lim \sup _{n}\left|\rho_{n}\right|^{1 / n}<\infty$ and $\sup _{k>n}\left|\rho_{k}\right|>0, \forall n$, then there exists a scalar sequence $\left(\alpha_{n}\right)_{n=1}^{\infty}$ which satisfies
(i) $\sum_{n=1}^{\infty}\left|\frac{\rho_{n}}{\alpha_{n}}\right|^{2}<\infty$,
(ii) $\sum_{n=1}^{\infty}\left|\frac{p_{n+1}}{\alpha_{n}}\right|^{2}<\infty$ and
(iii) $\left(\frac{\alpha_{n+1}}{\alpha_{n}}\right)_{n=1}^{\infty}$ is bounded.

Moreover, if $\lim \sup _{n}\left|\rho_{n}\right|^{1 / n}=0$, then (iii) can be replaced by
(iv) $\lim _{n} \frac{\alpha_{n+1}}{\alpha_{n}}=0$.

Proof. Let $r_{n}=\sup \left(\left|\rho_{k}\right|^{1 / k}: k \geqslant n\right) \quad$ and $\quad r=\lim _{n} r_{n}$. If \quad we take $\alpha_{n}=\left(\left(n^{2}+1\right) r_{n}^{2 n}-\left|\rho_{n}\right|^{2}\right)^{1 / 2}$, then

$$
n^{2} r_{n}^{2 n} \leqslant \alpha_{n}^{2} \leqslant\left(n^{2}+1\right) r_{n}^{2 n} \quad(n=1,2, \ldots)
$$

It is easy to verify (i), (ii) and (iii). If $r=0$ then (iv) obviously holds.
Theorem 4.1. Let $f(z)=\sum_{n=0}^{\infty} c_{n} z^{n}$ have radius of convergence R. Let $c_{0}=1$. Then:
(a) There exists a bounded linear operator A in H such that $\left\langle A^{n} e_{0}, e_{0}\right\rangle=c_{n}(n=0,1,2, \ldots)$ if and only if $R>0$.
(b) If $R=\infty$ then there is a compact linear operator A in H with $\left\langle A^{n} e_{0}, e_{0}\right\rangle=c_{n}(n=0,1,2, \ldots)$.

Proof. If A is bounded and $\left\langle A^{n} e_{0}, e_{0}\right\rangle=c_{n}(n=0,1,2, \ldots)$, then $\left|c_{n}\right|^{1 / n}=$ $\left|\left\langle A^{n} e_{0}, e_{0}\right\rangle\right\rangle^{1 / n} \leqslant\|A\|$, so $R>0$.

Conversely let $R>0$. We may assume that $\sup _{k>n}\left|\rho_{k}\right|>0, \forall n$. By Lemma 4.1 there is a sequence of scalars $\left(\alpha_{n}\right)_{n=1}^{\infty}$ such that
(1) $\sum_{n=1}^{\infty}\left|\frac{c_{n}}{\alpha_{n}}\right|^{2}<\infty$,
(2) $\sum_{n=1}^{\infty}\left|\frac{c_{n+1}}{\alpha_{n}}\right|^{2}<\infty$ and
(3) $\left(\frac{\alpha_{n+1}}{\alpha_{n}}\right)_{n=1}^{\infty}$ is bounded if we have only $R>0$, and
(4) $\lim _{n} \frac{\alpha_{n+1}}{\alpha_{n}}=0$ if $R=\infty$.

If $A e_{0}=c_{1} e_{0}+\alpha_{1} e_{1}$ and $A e_{n}=\left(\left(c_{0} c_{n+1}-c_{1} c_{n}\right) / \alpha_{n}\right) e_{0}-\left(\alpha_{1} c_{n} / \alpha_{n}\right) e_{1}+$ $\left(\alpha_{n+1} / \alpha_{n}\right) e_{n+1}$ for $n=1,2, \ldots$, then $A^{n} e_{0}=c_{n} e_{0}+\alpha_{n} e_{n}$ so that $\left\langle A^{n} e_{0}, e_{0}\right\rangle=c_{n}$ for all n and it follows directly from (1), (2), (3) and (4) that A is bounded if $R>0$ and that A is compact if $R=\infty$, since the matrix of A with respect to $\left(e_{n}\right)_{n=0}^{\infty}$ is given by

	e_{0}	e_{1}	e_{2}	\ldots	e_{n}	...
e_{0}	c_{1}	$\frac{d_{1}}{\alpha_{1}}$	$\frac{d_{2}}{\alpha_{2}}$	\ldots	$\frac{d_{n}}{\alpha_{n}}$...
e_{1}	α_{1}	$-\frac{\alpha_{1} c_{1}}{\alpha_{1}}$	$-\frac{\alpha_{1} c_{2}}{\alpha_{2}}$	\ldots	$-\frac{\alpha_{1} c_{n}}{\alpha_{n}}$	\ldots
e_{2}	0	$\frac{\alpha_{2}}{\alpha_{1}}$	0	...	0	\ldots
		0	$\frac{\alpha_{3}}{\alpha_{2}}$	\bullet.	;	
:		!	0	\because	0	
e_{n+1}			!		$\frac{\alpha_{n+1}}{\alpha_{n}}$	
:					0	\because
					!	-

where $d_{n}=c_{0} c_{n+1}-c_{1} c_{n}(n=1,2, \ldots)$.
Remark 4.1. Let A be the operator constructed in the second part of the proof of Theorem 4.1. If $u_{n}=A^{n} e_{0}(n=0,1,2, \ldots)$ and $\hat{u}_{n}=u_{n}\|u\|$, then the operator $T: H \rightarrow H$ defined by $T e_{n}=\hat{u}_{n}(n=0,1,2, \ldots)$ is an isomorphism of H. This means that $\left(\hat{u}_{n}\right)_{n=0}^{\infty}$ is a basis of H which is equivalent to $\left(e_{n}\right)_{n=0}^{\infty}$. Hence the sequence $\left(u_{n}\right)_{n=0}^{\infty}$ is also a basis. However, if A is compact, then $\left(u_{n}\right)_{n=0}^{\infty}$ cannot be equivalent to $\left(e_{n}\right)_{n=0}^{\infty}$ since in that case the shift operator $e_{n} \rightarrow e_{n+1}$ in l_{2} would be compact.

Theorem 4.2. Let $\sum_{n=0}^{\infty} c_{n} z^{n}$ have a positive radius of convergence and let $c_{0}=1$. Then the following are equivalent:
(a) There exists a compact linear operator A in H such that $\left\langle A^{n} e_{0}, e_{0}\right\rangle=c_{n}(n=0,1,2, \ldots)$.
(b) There is a meromorphic function f on \mathbf{C} such that $f(z)=\sum_{n=0}^{\infty} c_{n} z^{n}$ in some neighborhood of 0.

Proof. (a) \Rightarrow (b). Let A be compact and suppose that $\left\langle A^{n} e_{0}, e_{0}\right\rangle=c_{n}$ ($n=0,1,2, \ldots$). Then the set of singular values for A is at most countable and the only possible point of accumulation is $z=\infty$. Moreover, the singular values $\neq \infty$ for A are poles of the operator-valued function $z \rightarrow(I-z A)^{-1}$ which is holomorphic on the set of regular values (see Dunford and Schwartz [6, VII.3.2 and VII.4.5]), so $z \rightarrow(I-z A)^{-1}$ is meromorphic on \mathbf{C} and regular at $z=0$. Consequently $f(z)=\left\langle(I-z A)^{-1} e_{0}, e_{0}\right\rangle$ is a scalarvalued meromorphic function on \mathbf{C} which, in addition, satisfies

$$
f(z)=\sum_{k=0}^{\infty}\left\langle z^{k} A^{k} e_{0}, e_{0}\right\rangle=\sum_{k=0}^{\infty} c_{k} z^{k} \quad \text { for } \quad|z|<\|A\|^{-1} .
$$

(b) \Rightarrow (a). Let f be meromorphic on \mathbf{C} and let

$$
f(z)=\sum_{k=0}^{\infty} c_{k} z^{k} \quad \text { for } \quad|z|<\delta,(\delta>0)
$$

Then there exist entire functions g and h such that

$$
\begin{equation*}
f(z)=\frac{1+z h(z)}{1-z g(z)} \quad \text { for all } \quad z \in \mathbf{C} \backslash\{\text { poles }\} . \tag{4.1}
\end{equation*}
$$

Put $h(z)=\sum_{k=0}^{\infty} \mu_{k} z^{k}$ and $g(z)=\sum_{k=0}^{\infty} \lambda_{k} z^{k}$ for all $z \in \mathbf{C}$. Then it follows from (4.1) that

$$
\begin{equation*}
c_{n+1}=\lambda_{n} c_{0}+\lambda_{n-1} c_{1}+\cdots+\lambda_{0} c_{n}+\mu_{n} \quad(n=0,1,2, \ldots) . \tag{4.2}
\end{equation*}
$$

We assume that f is not a rational function. This is certainly the case if the sequence $\left(c_{n}\right)_{n=0}^{\infty}$ is normal. When g and h both reduce to polynomials, a slight modification of the proof given here yields a finite dimensional operator which generates the moments c_{n}.

Let $u_{0}=e_{0}, u_{1}=c_{1} e_{0}+e_{1}$ and $\alpha_{1}=1$. If $\rho_{n}=\left|\lambda_{n}+\mu_{n}\right|+\left|\mu_{n-1}\right|\left|\| u_{1}\right| \mid$ ($n=1,2, \ldots$), then $\lim _{n}\left|\rho_{n}\right|^{1 / n}=0$ and for all n, $\sup _{k \geqslant n}\left|\rho_{k}\right|>0$. By Lemma 4.1 there is a sequence of scalars $\left(\alpha_{n}\right)_{n=2}^{\infty}$ satisfying

$$
\begin{equation*}
\sum_{n=2}^{\infty}\left|\frac{\rho_{n}}{\alpha_{n}}\right|^{2}<\infty \quad \text { and } \quad \lim _{n} \frac{\alpha_{n+1}}{\alpha_{n}}=0 \tag{4.3}
\end{equation*}
$$

We extend u_{0}, u_{1} inductively to a sequence $\left(u_{n}\right)_{n=0}^{\infty}$ by

$$
\begin{equation*}
u_{n+1}=\left(\mu_{n}+\lambda_{n}\right) u_{0}+\lambda_{n-1} u_{1}+\cdots+\lambda_{0} u_{n}+\alpha_{n+1} e_{n+1} \quad(n=1,2, \ldots) \tag{4.4}
\end{equation*}
$$

and we notice that this relation is also valid for $n=0$. As $\left(u_{n}\right)_{n=0}^{\infty}$ is an independent sequence we can define the linear operator A in H by

$$
\begin{equation*}
A u_{n}=u_{n+1} \quad(n=0,1,2, \ldots) \tag{4.5}
\end{equation*}
$$

Then it follows from (4.4) and (4.5) that

$$
\begin{aligned}
& \left(\mu_{n-1}+\lambda_{n-1}\right) u_{1}+\lambda_{n-2} u_{2}+\cdots+\lambda_{0} u_{n}+\alpha_{n} A e_{n}=u_{n+1} \\
& \quad=\left(\mu_{n}+\lambda_{n}\right) u_{0}+\lambda_{n-1} u_{1}+\cdots+\lambda_{0} u_{n}+\alpha_{n+1} e_{n+1} \quad \text { for } \quad n=1,2, \ldots
\end{aligned}
$$

and this implies

$$
\begin{equation*}
A e_{n}=\frac{1}{\alpha_{n}}\left[\left(\lambda_{n}+\mu_{n}\right) u_{0}-\mu_{n-1} u_{1}\right]+\frac{\alpha_{n+1}}{\alpha_{n}} e_{n+1} \quad(n=1,2, \ldots) \tag{4.6}
\end{equation*}
$$

Together with $A e_{0}=c_{1} e_{0}+e_{1}$ this gives, by (4.3) and the definition of ρ_{n}, that A is compact. Furthermore we have $\left\langle e_{0}, e_{0}\right\rangle=1,\left\langle A e_{0}, e_{0}\right\rangle=c_{1}$ and, by induction, using (4.4) and (4.2),

$$
\begin{aligned}
\left\langle A^{n} e_{0}, e_{0}\right\rangle & =\left\langle u_{n}, u_{0}\right\rangle \\
& =\left\langle\left(\mu_{n-1}+\lambda_{n-1}\right) u_{0}+\lambda_{n-2} u_{1}+\cdots+\lambda_{0} u_{n-1}+\alpha_{n} e_{n}, u_{0}\right\rangle \\
& =\left(\mu_{n-1}+\lambda_{n-1}\right) c_{0}+\lambda_{n-2} c_{1}+\cdots+\lambda_{0} c_{n-1}=c_{n}, \quad(n=2,3, \ldots)
\end{aligned}
$$

Remark 4.2. Theorem 4.2 shows that convergence results based on the compactness of the operator are restricted to meromorphic functions.

Remark 4.3. It can be shown that in the above construction we have $u_{0}=e_{0} \quad$ and $\quad u_{n}=c_{n} e_{0}+\zeta_{n-1} \alpha_{1} e_{1}+\zeta_{n-2} \alpha_{2} e_{2}+\cdots+\zeta_{0} \alpha_{n} e_{n} \quad(n=1,2, \ldots)$, where the ζ_{n} are given by $1 /(1-z g(z))=\sum_{n=0}^{\infty} \zeta_{n} z^{n}$ in some neighborhood of 0 . It is easily seen from these relations that in this construction $\left(u_{n}\right)_{n=0}^{\infty}$ is in general not a basis of H.

Remark 4.4. If the elements of the sequence $\left(c_{n}\right)_{n=0}^{\infty}$ are of the special form $c_{n}=\sum_{k=0}^{\infty} \alpha_{k}^{n}\left|\xi_{k}\right|^{2}$, where $\sum_{k=0}^{\infty}\left|\xi_{k}\right|^{2}<\infty$, then the operator moment problem has a very simple solution.

If we define $A e_{n}=\alpha_{n} e_{n} \quad(n=0,1,2, \ldots)$ and $u_{0}=\sum_{k=0}^{\infty} \xi_{k} e_{k}$, then $\left\langle A^{n} u_{0}, u_{0}\right\rangle=c_{n}(n=0,1,2, \ldots)$. Moreover

$$
A \text { is bounded } \Leftrightarrow\left(\alpha_{n}\right)_{n=0}^{\infty} \text { is bounded }
$$

and

$$
A \text { is compact } \Leftrightarrow \lim _{n} \alpha_{n}=0 \text {. }
$$

Baker [1] remarked that the c_{n} have this special form if $f(z)=\sum_{n=0}^{\infty} c_{n} z^{n}$ belongs to a certain class of meromorphic functions.

References

1. G. A. Baker, Jr., Convergence of Pade approximants using the solution of linear functional equations, J. Math. Phys. 16, 4 (1975), 813-822.
2. G. A. Baker, Jr., The linear functional equation approach to the problem of the convergence of Padé approximants, in "Padé Approximants Method and its Applications to Mechanics" (H. Cabannes, Ed.), Lecture Notes in Physics 47, pp. 3-15, SpringerVerlag, Heidelberg/New York, 1976.
3. C. Brezinski, "Padé-Type Approximation and General Orthogonal Polynomials," ISNM 50, Birkhäuser Verlag, Basel, 1980.
4. J. S. R. Chisholm, Solution of linear equations using Pade approximants, J. Math. Phys. 4, 12 (1963), $1506-1510$.
5. J. S. R. Chisholm, Padé approximants and linear integral equations, in "The Pade Approximant in Theoretical Physics" (G. A. Baker, Jr., and J. L. Gammel, Eds.), Mathematics in Science and Engineering, Vol. 71, p. 171-182, Academic Press, New York. 1970.
6. N. Dunford and J. T. Schwartz, "Linear Operators I," Wiley, New York, 1957.
7. O. Perron, "Die Lehre von den Kettenbrüchen," Teubner, Stuttgart, 1957.
8. Yu. Vorobyev, "Method of Moments in Applied Mathematics," Gordon \& Breach, New York, 1965.
